Growing opportunities in climate change adaptation EUFIWACC climate risk information day for consultants Brussels - 2nd June 2015

How to interpret climate change projections

Diana Rechid

Climate Service Center 2.0 diana.rechid@hzg.de

Eine Einrichtung des Helmholtz-Zentrums Geesthacht

Structure

1. Motivation

- 2. Range of climate change projections
- ▶ 3. Model ensemble experiments
- 4. Relevance of uncertainties

Weather and Climate

Weather

- Physical state of atmosphere at a certain time and location
- can be characterised by measured meteorological parameters, e.g. air pressure, humidity, temperature

Weather is what you get

Climate

- Statistical distribution of weather characteristics over a long time period (WMO: 30 years)
- e.g. 30-year-mean of saisonal air temperature

Climate is what you expect

Weather forecast and Climate projection

Modified from Meehl et al. (2009)

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Coping range

5

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Eine Einrichtung des Helmholtz-Zentrums Geesthacht

Climate Service Center

Climate Projections

CMIP5: Simulated annual temperature values in Europe relative to 1971-2000

Challenge: Uncertainties of Climate Projections

Uncertainties are large does not mean that risks are small

- we need to understand uncertainties, so that they can be incorporated into the decision making process
- in order to avoid under-adaptation and over-adaptation

Each adaptation project has its own challenges

- many are related to uncertainties of potential future climate changes
- its relevance also depends on the importance of non-climate factors

Range of climate change projections

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Climate Service Center 2.0

8

Future climate evolution depends on:

Natural external factors

Changing natural factors outside the climate system e.g. solar variability, volcanic eruptions

Future climate evolution depends on:

Natural external factors

Changing natural factors outside the climate system e.g. solar variability, volcanic eruptions

Human action

Anthropogenic emissions of radiatively active substancies to the atmosphere Land use changes

Future climate evolution depends on:

Natural external factors

Changing natural factors outside the climate system e.g. solar variability, volcanic eruptions

Human action

Anthropogenic emissions of radiatively active substancies to the atmosphere Land use changes

Internal climate variability

Variations of climate due to natural processes inside the climate system

Climate projections: main sources of spread

Natural external factors

Changing natural factors outside the climate system e.g. solar variability, volcanic eruptions

Human action

Anthropogenic emissions of radiatively active substancies to the atmosphere Land use changes

Internal climate variability

Variations of climate due to natural processes inside the climate system

Modelling uncertainties

Models are a simplified image of the earth climate system

Model Ensemble Experiments

mate Service Center 2.0

Climate projections: Ensemble experiments

Natural external factors

Prescribed or constant ("Unknowns")

Human action

Emission scenario ensemble

Internal climate variability

Initial condition ensemble

Modelling uncertainties

Multi-model ensemble

sample both modelling uncertainites and initial conditions ensembles of (best available) opportunities

Emission scenarios: Representative Concentration Pathways RCPs

Over 1000 scenarios from the IPCC Fifth Assessment Report are shown Source: Fuss et al 2014; CDIAC; Global Carbon Budget 2014 GLOBAL CARBON PROJECT

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

© Climate Service Center 2.0

Multi-model ensemble CMIP5 and CMIP3

MIPs Model Intercompariso Projects (since 1990): standard experiment protocol and an world wide community-based infrastructure in support of model simulations, validation, intercomparison, documentation and data access.

CMIP3: coordinated climate projections, based on emission scenarios from SRES, global model basis for IPCC AR4

CMIP5: a new set of coordinated, based on the new RCPs, global model basis for IPCC AR5

Ensemble experiments: assessment of uncertainty

Source: Pelt and Ludwig, ECLISE user guide on uncertainties: http://www.eclise-project.eu/content/mm_files/do_824/D%201.2-User%20guide%20on%20uncertainties.pdf

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Global temperature change (relative to pre-industrial) [^oC]

Figure created by Ed Hawkins 2014, source: http://www.climate-lab-book.ac.uk/2014/cascade-of-uncertainty/

CMIP5 data available via Earth System Grid Federation ESGF: http://esgf-data.dkrz.de/esgf-web-fe/

Monthly values can easily be accessed by **KNMI climate change atlas**: <u>http://climexp.knmi.nl/plot_atlas_form.py</u>

Iearn more about KNMI climate explorer: presentation by Paul Bowyer

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Climate Service Center 2.0

95th Percentile

95% rcp85 temperature 2071-2100 minus 1971-2000 Jan-Dec full CMIP5 ensemble

50th Percentile/Median

mean rcp85 temperature 2071-2100 minus 1971-2000 Jan-Dec full CMIP5 ensemble

5th Percentile

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 3 4 5 7 9 11

95th Percentile

95% rcp85 temperature 2071-2100 minus 1971-2000 Jan-Dec full CMIP5 ensemble

50th Percentile/Median

mean rcp85 temperature 2071-2100 minus 1971-2000 Jan-Dec full CMIP5 ensemble

Further evalutions on how robust are the simulated results:

- model agreement: e.g. how many models agree in the sign of the simulated change
- on the significance of change: e.g. if change is larger than 1 std of interannual variations

see also presentation by Andreas Hänsler

5th Percentile 05% rcp85 temperature 2071-2100 minus 1971-2000 Jan-Dec full CMIP5 ense

Relevance of Uncertainties

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Climate Service Center 2.0

Uncertainties in climate projections

depend on:

- climate parameters
- indices (mean or extremes)
- time scale
- spatial scale

Internal Climate Variability is larger

- for precipitation than temperature,
- for indices related to extremes than to mean climatic conditions,
- for smaller regions and
- on shorter time scales

Climate Service Center 2.0

Relevance of uncertainties on different time scales

Relative contributions to the total projected range of decadal annual mean in Europe

Figures: http://climate.ncas.ac.uk/research/uncertainty/plots.html, Source: Hawkins & Sutton 2009, 2010

Temperature:

- internal variability dominates on shorter time scales,
- emission scenarios on longer time scales

Precipiation:

- internal variability dominates on shorter time scales
- modelling uncertainties on longer time scales

Climate information on different time scales and temporal context of the project

Climate Service Center

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

CMIP5: Simulated annual precipitation values (Germany) relative to 1971-2000

Adaptation to increased precipitation variability Example: Water management infrastructure

water sewage systems

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

Climate Service Center 2.0

Some key messages

- Climate models are not the real world and we can not foresee the future
- Climate projections show us a whole range of possibilities how future climate may evolve
- How this range should be considered in adaptation planning, depends on the specific project: climate parameters, temporal and spatial scales
- There is no standard recipe, but understanding of climate data uncertainty is always an important step
- There are some generic methods and tools how to deal with results of climate projections and how to derive robust climate information: see presentations this afternoon

Some generic climate data guidelines and good practise examples

European Climate Adaptation Platform (CLIMATE-ADAPT) http://climate-adapt.eea.europa.eu/uncertainty-guidance/

ECLISE: Enabling CLimate Information Services for Europe FU FP7 2011-2013 http://www.eclise-project.eu

www.wmo.int e.g. http://www.wmo.int/pages/prog/wcp/ccl/guide/documents/ WMO 100 en.pdf

Reader on "Uncertainties of climate projections and how to derive robust climate change information", incl. good practise examples, will be provided: www.climate-service-center.de/eufiwacc

★

World Meteorological Organization

Thank you for your attention.

Climate Service Center 2.0

Eine Einrichtung des Helmholtz-Zentrums Geesthacht

When might we hit 2° C?

wrt pre-industrial

Global mean warming of 2 °C will be reached by all simulations based on RCP8.5 between 2030 – 2060 - Apply model results at this threshold and study impact under 2°C

Vautard et al., 2014

32

Climate models

Differential equations describing dynamics and physics in the climate system: discretized on a 3-D grid, time dependent numerical solutions (Courant–Friedrichs–Lewy (CFL) condition necessary condition for stability) and physical parameterisations for subscale processes

Contributions to inter-model spread in climate sensitivty

D. Rechid, How to interpret climate change projections, Brussels, 2nd June 2015

CORDEX CORdinated Downscaling EXperiment

12 domains with a resolution of 0.44°x0.44° (approx. 50x50km²)

High resolution simulations with 0.11°x0.11° (approx. 12x12km²) for Europe

Orography of CORDEX model domains in [m] (except for the Arctic and Antarctica) CORDEX data available via Earth System Grid Federation ESGF: <u>http://esgf-data.dkrz.de/esgf-web-fe/</u>

REMO @ MPI-M & CSC

Relevance of high resolution modelling

Essential if coarse resolution simulations are a priori implausible:

- regions with small irregular land masses and complex coastlines
- areas of complex topography
- areas with heterogeneous landscapes
- areas where resolving meso-scale atmospheric phenomena is critical to reproducing important features of the climate (e.g. monsoon)

Type of needed information:

Some climate variables and indices are more sensitive to model resolution than others, e.g.

- temperature vs. precipiaton
- extremes vs means

See also: Mearns et al., 2003, Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments

Climate information on different spatial scales and spatial context of the project

1) Global integrated assessments: Global General Circulation Models

2) National or continental scale assessments: Global General Circulation Models

Regional Climate Models, on e.g. ~50 km

3) Regional (subcontinental) assessment: Regional Climate Models, on ~50 km to ~10 km

4) Local assessment:

(Non-hydrostatic) Regional Climate Models on ~1 km to ~100 m Statistical downscaling Combined approaches of dynamic and statistical downscaling

Figure source: David Viner, CRU, University of East Anglia, UK

